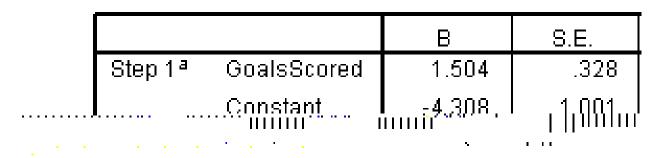
An Overview of Logistic Regression

Christoph Maier
Coordinator of the Applied Research Lab

Stats For Lunch

Observed Likelihood and the Predicted Likelihood of Winning



Use SPSS to Estimate the Likelihood (Probability) of Winning

Important Fields in the Variable View Tab:

From the SPSS Output

Variables in the Equation

$$P(winning) = \frac{1}{1 + e^{-(\frac{b_0 + b_1 \text{ NumGoals}}{)}}} = \frac{1}{1 + e^{-(\frac{-4.308 + 1.504 \text{ NumGoals}}{)}}}$$

So when they score 3 goals the likelihood of their winiing the game

$$\frac{1}{1 + e^{-(-4.308 + 1.504 \times 3)}} = .551$$

Multiple Regression vs Logistic Regression

Multiple Regression	Logistic Regression
Predicted values like the DV	DV=binary (yes/no) but your predict probability=likelihood [0,1]
Estimation by OLS=Ordinary Least Squares	by MLE=Maximum Likelihood Estimation (involves iterating)

Dummy or Indicator Variables

In multiple and logistic regression, you can not use nominal variables like scale variables.

Must create dummy variables to use in place of the nominal variable:

First Decide which level is the reference category Then create dummy variables for all other levels Each dummy variable is coded 0 = no and 1=yes

Example: Variable=Race

Race: Nominal variable with 4 levels

Reference First Dummy Variable Second Third Dummy

African Am

O=No 1=Yes

O=No 1=Yes

In SPSS

AfricanAm	Asian	OtherRace
0	0	0
1	0	0
0	1	0
0	0	1
	AfricanAm 0 1 0	AfricanAm Asian 0 0 1 0 0 1 0 0

How does the reference category work? Race=1

AfricanAm=0 (no), Asian=0 (no) Otherrace=0 (no) Caucasian=Not African American, not Asian, not other

Odds of an event occurring

racemore management the act the west against industry

Probability (likelihood) of contracting a certain disease by race

race	Caucasian (reference category)	African American	Other
Probability	.23	.17	.75
Odds	.23/.77=.3	.17/.83=.2	.75/.25=3

Odds Ratio

odds ratio =
$$\frac{\text{odds of the target category}}{\text{odds of the reference category}}$$

race	Caucasian (reference category)	African American	Other
Probability	.23	.17	.75
Odds	.23/.77=.3	.17/.83=.2	.75/.25=3
Odds Ratio	Reference	.2/.3 = .67	3/.3 = 10

Odds Ratios for Continuous Variables

- Suppose Odds ratio = 1.1 where Reference category= any year Target category= the next year
- The odds of contracting the disease increases by a multiplicative factor of 1.1 every year.
 - The target and the reference category can be reversed. Target category is the year before the reference category. Then the odds ratio = 1/1.1 = .909. Recommended when odds ratio < 1.

Odds Ratios for Continuous Variables

For odds ratio of 1.1 per year

If the odds is 0.8 for a 50 year old, then
the odds for a 51 year old is 0.8*1.1 = 0.88And the odds of a 52 year old is $0.88*1.1=0.8*(1.1)^2 = 0.968$

$$.8*(1.1)^{10} = 2.07$$

Interpretation of Odds Ratios for Continuous Variables

Second Example

Predict the likelihood of Pittsburgh winning a game based on two predictors:

The number of goals they score in the game.

GoalsScored = scale variable

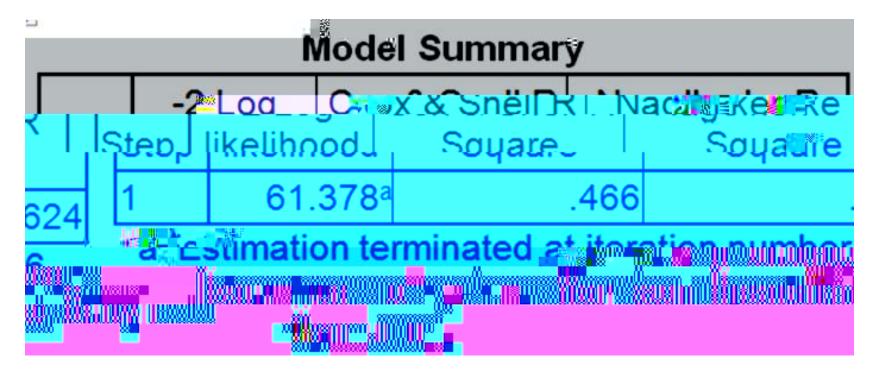
Whether the game is a home game.

Home = Nominal variable

where 0= no, not a not home (away game)

1=yes, a home game

Home is a nominal Variable

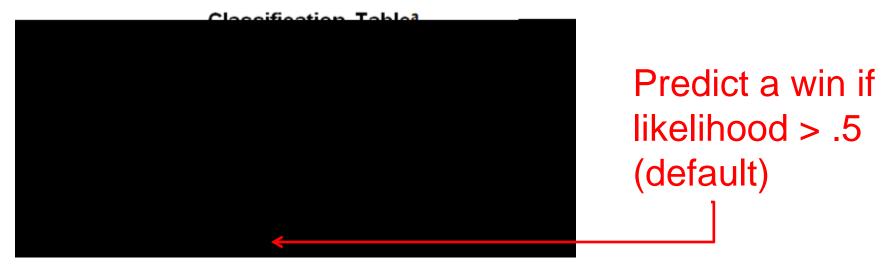

But it only has two levels so once you choose the reference category, there is only one level that must be converted to a dummy variable.

Reference category: 0= Away game

Dummy variable: Home 0=away 1=home

© The original variable is the dummy variable. Dummy variables coded 0 and 1, not 1 and 2.

Question # 2 What is r² for this model?



Cox & Snell underestimates R²

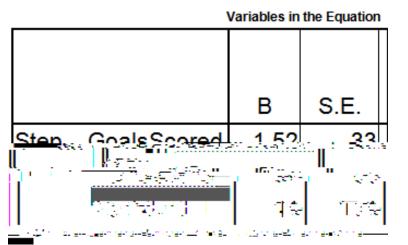
So using Nagelkerke, the model as a whole explains 62.4% of the variability in outcomes of the game.

Question #3

How well does the model predict wins and losses?

The Penguins lost 31+6=37 of their games. The model correctly predicted a loss in 31 (83.8%) of those games (specificity).

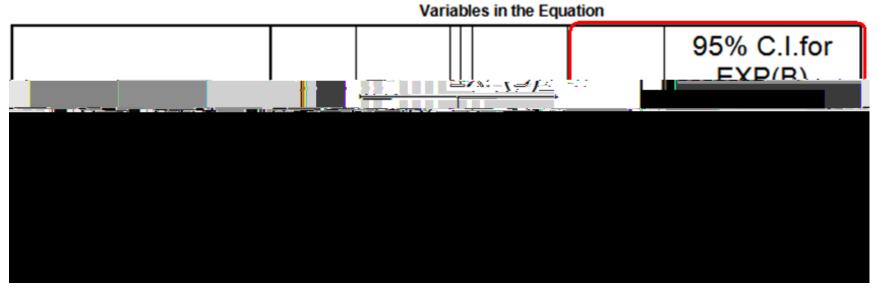
The Penguins won 8+37=45 of their games. The model correctly predicted a win in 37 (82.2%) of those games (sensitivity).


Question # 4 Are the individual predictors statistically significant?

-square distribution

Warning: This test can under some circumstances tend to declare that statistically significant variables are not statistically significant.

Question # 5 Equation for Predicting likelihood of winning?



The coefficients (B) in Logistic

because they are the natural log of the odds ratio.

$$1 + e^{-(-4.8 + 1.52 \text{ NumGoals} + .87 \text{ HomeGame})}$$

Question # 6 What is the effect of GoalsScored?

Use odds ratio = Exp(B)

The odds of winning the game increases by a factor of 4.6 for every additional goal scored! (more than quadruples)

95% confident that the odds of winning the game increases by a factor of between 2.4 and 8.7 for every additional goal scored.

Question # 7 What is the effect of HomeGame?

Which predictor is the most important predictor of winning a game?

Goals Scored:

 $M=3.22 SD=1.785 OR=1.52 OR^{SD} = 1.52^{3.22} = 3.85$

HomeGame:

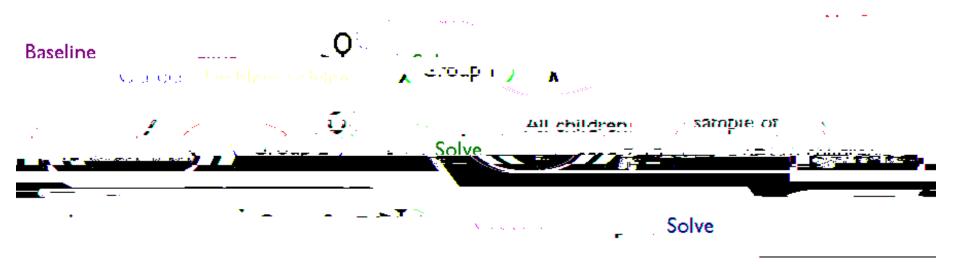
M=0.5 SD=.503 OR=2.4 ORSD = $2.4^{.503} = 1.55$

Which factor is a more important predictor?

GoalsScored: odds increases by a factor of 3.85 when GoalsScored increases by 1 SD. © more important

HomeGame: odds increases by a factor of 1.55 when HomeGame is increased by 1 SD.

Question # 9 Are there any outliers?


Question # 10 Does the data meet the conditions for using Logistic Regression

MultiColinearity

Look for values of |r| > .8 between predictors Where r=Pearson Correlation Coefficient

Example # 3

Variables

Pretest Scale Control Variable

Gender Nominal Independent Variable

Strategy Nominal Independent Variable

Solve Nominal Dependent Variable

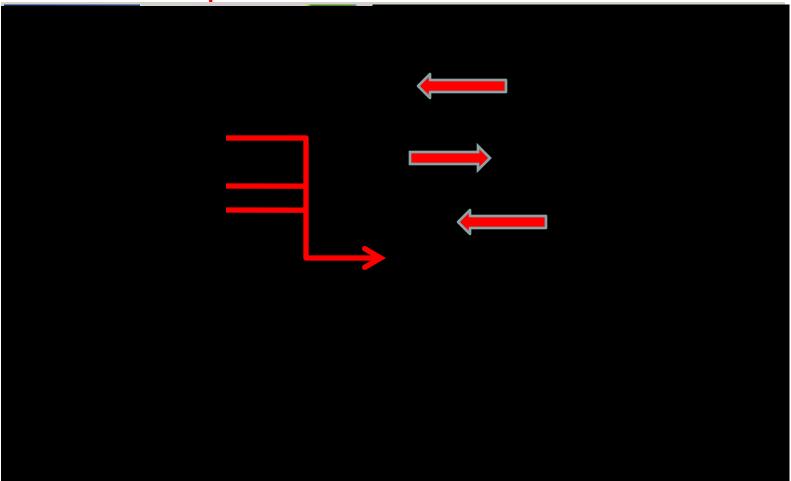
Example # 3 How the SPSS Variables were coded

Gender 1=Female 2=Male

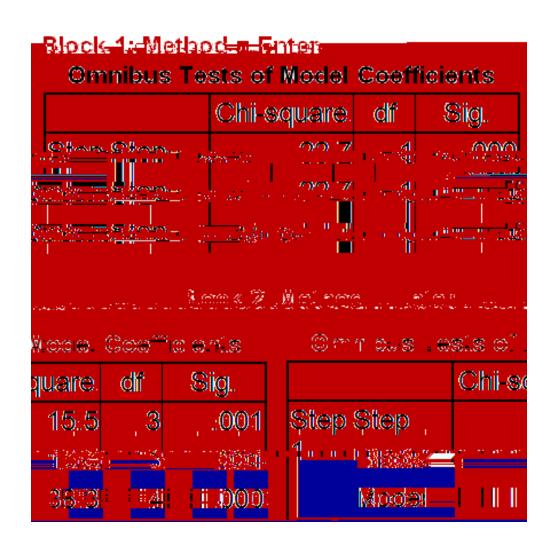
Pretest scale of 0 to 100 points

Strategy

Example # 3 SPSS Dummy Variables


Gender 1=Female 2=Male

→ reference category: Male first dummy: Female 0=No 1=Yes


```
Strategy 1=No strategy (control)
2=Strategy A
3=Strategy B
```

→ reference category: control first dummy: StrategyA 0=no 1=yes second dummy: StrategyB 0=no 1=yes

Hierarchical Logical Regression in SPSS
Use two blocks: control variables in the first block
and predictors in the second block

SPSS Screen Analyze → Regression → Logistic

Block 1
Effect of the control variables (pretest score)

Block 2
Effect of the Predictors
(female, Strategy A,
Strategy B)
after adjusting for
control variables

How to contact the ARL?

Location

Where we are located

Personnel 2009-2010

Coordinator:

Christoph Maier

Graduate Consultants

Steven Brewer Criminology

Ben Jarrett Mathematics

Chad Nease Mathematics